Introduction of Logic trees Principles for Weighting Scaling Law

Kevin Clahan SSC TI Team Member

Taiwan SSHAC Level 3 PSHA Study Workshop #3, June 19-23, 2017 Taipei, Taiwan

Seismic Source Characterization in Taiwan

Seismic Source Characterization in Taiwan

7 Primary Faults

- 2 Subduction Interfaces					
P7	West Hengchun Offshore Structure				
P6	Hengchun Fault System				
P5	Northern Ilan Fault System				
P4	Aoti Offshore Faults				
P3	S Fault				
P2	ST-II Fault System				
P1	Shanchiao Fault System				

2 Subduction Interfaces

Onshore Offshore **48 Other Faults** Shuanglienpo structure 26 Hsiaokangshan fault 1t Yangmei structure 27 **Kaoping River structure** 2 Hukou fault 3 28 Milun fault Fengshan river strike-slip structure 29 Longitudinal Valley fault 4 5 Hsinchu fault 30 **Central Range structure** Hsincheng fault 31 Luveh fault 6 7 Hsinchu frontal structure 32 Taimali coastline structure Southern Ilan structure **Touhuanping structure** 33 8 Miaoli frontal structure 9 34 **Chushiang structure** 10 **Tunglo structure** 35 **Gukeng structure** East Miaoli structure 36 **Tainan frontal structure** 11 Shihtan fault 12 37 Longchuan structure 13 Sanyi fault 38 Youchang structure 14 **Tuntzuchiao fault** 39 Fengshan hills frontal structure **Taitung Canyon Fault** 15 Changhua fault 40 16 Chelungpu fault 41 **Binhai Fault** 17 Tamaopu - Shuangtung fault 42 North Luzon Strike Slip Fault 18 **Chiuchiungkeng fault North Luzon Backthrust Fault** 43 19 **Meishan fault** 44 East Hengchun Offshore Fault 20 **Chiayi frontal structure** 45 **Hengchun Ridge Offshore Fault** Muchiliao - Liuchia fault **Manila Splay Fault** 21 46 22 **Chungchou structure** 47 **Ryukyu Strike Slip Fault** Hsinhua fault **Okinawa Trough Fault** 23 48 24 Houchiali fault **Chishan fault** 25

1	Shuanglienpo structure	26	Hsiaokangshan fault		
2	Yangmei structure	27	Kaoping River structure	25" N	T
3	Hukou fault	28	Milun fault	20 14	
4	Fengshan river strike-slip structure	29	Longitudinal Valley fault		
5	Hsinchu fault	30	Central Range structure		
6	Hsincheng fault	31	Luyeh fault		-
7	Hsinchu frontal structure	32	Taimali coastline structure		illo <u>s</u>
8	Touhuanping structure	33	Southern Ilan structure		
9	Miaoli frontal structure	34	Chushiang structure	Num	
10	Tunglo structure	35	Gukeng structure	Num	
11	East Miaoli structure	36	Tainan frontal structure	а	1922 0k
12	Shihtan fault	37	Longchuan structure		36
13	Sanyi fault	38	Youchang structure	b	1922
14	Tuntzuchiao fault	39	Fengshan hills frontal structure		201
15	Changhua fault	40	Taitung Canyon Fault		2
16	Chelungpu fault	41	Binhai Fault		
17	Tamaopu - Shuangtung fault	42	North Luzon Strike Slip Fault		
18	Chiuchiungkeng fault	43	North Luzon Backthrust Fault		2
19	Meishan fault	44	East Hengchun Offshore Fault		
20	Chiayi frontal structure	45	Hengchun Ridge Offshore Fault		
21	Muchiliao - Liuchia fault	46	Manila Splay Fault		2
22	Chungchou structure	47	Ryukyu Strike Slip Fault		
23	Hsinhua fault	48	Okinawa Trough Fault		
24	Houchiali fault		48 Other Faults		2
25	Chishan fault				-
		ad	d Okinawa Trough	n fa	ult

Okinawa Trough fault

Seismic Source Characterization in Taiwan

Areal Zoning Schemes Considered

Seismic Source Characterization in Taiwan

Zoning Schemes Overview

Zoning Scheme	Scheme B	Scheme S	Scheme Z
Boundary Reference	NPPs' PSHA Report (1994)	C.T. Cheng, 2002	New Creation (H.J. Liu)
Seismic Source Classification	 Shallow zones Beneath Interface crustal zones Deep zones Intraslab zones Volcanic zones 	 Shallow zones Deep zones Intraslab zones Volcanic zones 	 Shallow zones Beneath Interface crustal zones Deep zones Intraslab zones Volcanic Zones
Depth Ranges of Shallow Zones	0 – 35km 0 – 50km	0 – 35km	0 – 35km 0 – 50km
No. of Shallow Zones	25	38	6
No. of Beneath Interface Crustal Zones	4	N/A	2
No. of Intraslab Zones	19	11	6
No. of Deep Zones	20	8	6 11

Seismic Source Characterization in Taiwan

Subduction - Source type

Ryukyu Subduction Zone

Manila Subduction Zone

Classification of logic tree styles

Fault source

- ✓ Northern primary faults
- ✓ Southern primary faults
- ✓ Other faults : Onshore & Offshore

Subduction zone

- ✓ Ryukyu subduction
- ✓ Manila subduction

Areal source

- ✓ Scheme B
- ✓ Scheme S
- ✓ Zoneless

Fault Source & Interface Style of Logic Tree Node

Geometry

Style of	Rupture	Rupture	Seismogenic
Faulting	Model	Source	Dip Depth

Activity

Seismogenic Probability

Vertical Rate

Magnitude Distribution Model Max. Magn. Magnitude pdf

Fault Geometry Model

*Max Magn. :

•Max Magn. = Char. Magn. + 0.25

•Char. Magn. is calculated from Magnitude Scaling Law: Wells and Coppersmith (1994), Yen and Ma (2011) and Blaser et al (2010).

Areal Source Style of Logic Tree Node

Geometry

Areal Zoning Schemes

Activity

b-value & Activity Rate

Max Magnitude (for TE model)

Focal Mechanism

*Note:

- •Method of estimating b-value and activity rate: Maximum Likelihood Estimation
- •Magnitude pdf Model: G-R Truncated Exponential Model
- •Depth pdf Model: Normal Distribution for Shallow Zones Triangular Distribution for Deep Zones
- •Crustal GMPE: NGA-West2 (for Shallow Zones)
- •Intraslab GMPE: BCHydro, LL08 (for Deep Zones)
- •Max Magn. = Char. Magn. + 0.25
- •Char. Magn. is calculated from Magnitude Scaling Law: Strasser et al (2010) and Blaser et al (2010).

Principle of Weighting-I

3 branches

The weighting of Min. and Max. must be smaller than the weighting of Med., in other words, the weighting of the Med. is the highest unless there is definitive evidence otherwise.
 If the range of uncertainty is wide or the median is lacking evidence, the weighting would be given almost equal weighting as [0.3] [0.4] [0.3] and be given like normal distribution.
 If the middle branch is derived from direct measurement and reliable, the weighting would be given as normal distribution with small standard deviation such as [0.2] [0.6] [0.2].

2 branches

1. If the range of uncertainty is wide and/or lacking evidence, the weighting is given as equivalence [0.5] [0.5].

Principle of Weighting-II

0.00001

5

5.5

6

6.5

Magnitude

7.5

8

[0.5].

Char. Magnitude and PDF

Char. Eqk. Magnitude Scaling law for Crustal faults

Wells and Coppersmith (1994)[Surface Rupture Length]

SS	Mw = 5.16 + 1.12Log(SRL)
RV	Mw = 5.00 + 1.22Log(SRL)
NM	Mw = 4.86 + 1.32Log(SRL)

Wells and Coppersmith (1994)[Rupture Area]

SS	Mw = 3.98 + 1.02Log(A)
RV	Mw = 4.33 + 0.90Log(A)
NM	Mw = 3.93 + 1.02Log(A)

Yen and Ma (2011)[Area]

DS Log(Ae) = -12.45 + 0.80Log(Mo), Log(Mo) = 9.05 + 1.5Mw SS Log(Ae) = -14.77 + 0.92Log(Mo), Log(Mo) = 9.05 + 1.5Mw

Char. Eqk. Magnitude Scaling law for subduction zone

Strasser et al. (2010)

Mw = 4.441 + 0.846Log(A) Mw = 4.868+1.392*log10(SRL)

Blaser et al. (2010)

subduction Log(L) = -2.81 + 0.62Mw

Magnitude PDF

Fault source

- Characteristic earthquake model (Youngs and Coppersmith, 1985)
- -Truncated Exponential model (Cornell and Vanmarcke, 1968)

Areal source

-Truncated Exponential model (Cornell and Vanmarcke, 1968)

Subduction zone source

- –Interface
 - Characteristic earthquake model (Youngs and Coppersmith, 1985)
 - Truncated Exponential model (Cornell and Vanmarcke, 1968)
- Beneath interface crust and Intraslab
 - Truncated Exponential model (Cornell and Vanmarcke, 1968)

Areal Sources

Zoning Variation

Boundary of shallow and deep zone of Zone B is following the source type. Boundary of shallow and deep zone of Zone S is constant depth at 35km.

Areal Source Style of Logic Tree Node

Geometry

Areal Zoning Schemes

Activity

b-value & Activity Rate

Max Magnitude (for TE model)

Focal Mechanism

*Note:

- •Method of estimating b-value and activity rate: Maximum Likelihood Estimation
- •Magnitude pdf Model: G-R Truncated Exponential Model
- •Depth pdf Model: Normal Distribution for Shallow Zones Triangular Distribution for Deep Zones
- •Crustal GMPE: NGA-West2 (for Shallow Zones)
- •Intraslab GMPE: BCHydro, LL08 (for Deep Zones)
- •Max Magn. = Char. Magn. + 0.25
- •Char. Magn. is calculated from Magnitude Scaling Law: Strasser et al (2010) and Blaser et al (2010).

Areal Source Logic Tree

Longitude ([°]E)

Shallow Dips Proposed by PE in WS#2

陳致同等人(Chen et al., 2014)

Sensitivity Study for Dip Changes in W section

		Ge	ometry		Activity Min. Distance ((km)	
Proponent Expert	Focal Mech.	Length (km)	Depth (km)	Dip	Slip Rate (mm/yr)	Max. Magnitude	NPP1	NPP2	NPP4
K. Clahan			0-6-20	60° /25°	1.73	6.98	13.0	12.7	30.7
K. Clahan	NM 29		0-9-20	70° /25°	1.60	6.95	13.0	12.8	31.3
K. Clahan		29	0-20	80 °	1.52	6.75	13.0	12.9	41.5
C. T. Chen			0-3-9-20	75° /15° /60°	1.55	6.99	13.0	12.4	26.9

Hazard Sensitivity to NPP1 by W Section

Hazard Sensitivity to NPP2 by W Section

Hazard Sensitivity to NPP4 by W Section

determining the maximum expected magnitude. The maximum volumes are computed assuming L=3z (normal faulting), L=10z (strike-slip fault) and L=25z (thrust fault), where L is the fault length and z the involved volume depth. The different types of faulting have also different *b*-value of the Gutenberg-Richter relation⁹, supporting that besides the different involved volumes, earthquakes may have different mechanisms. Doglioni et al., 2015 Normal fault earthquakes or gravity quakes

S Fault

Manilla Subduction Zone Interface Geometry Setting

Southern primary faults & Manila subduction interface

West Hengchun Offshore Structure

WHCOS-RM

•Char. Magn. is calculated from Magnitude Scaling Law: Wells and Coppersmith (1994), Yen and Ma (2011).

Southern primary faults & Manila subduction interface

[0.5]

Southern primary faults & Manila subduction interface²

Southern primary faults & Manila subduction interface

[0.5]

Other faults

Other faults - Onshore

Other faults - Offshore

Subduction Zones

Subduction zone map

Subduction - Source type

Ryukyu Subduction Zone

Subduction interface Geometry Setting

•Max. Magn. = M_{char} (center of boxcar for Y&C model) +0.25 •Magnitude Scaling Law: Strasser et al., 2010 and Blaser et al (2010) •Subduction zone interface GMPE

Manila Subduction interface Georemodel Georetry model

Geometry Model Branch Point (B) (Case) / Interface 2(M) (Depth)

18

120°

122[°]

Manila subduction interface

•Max Magn. = Char. Eqk. Magn. + 0.25

•Char. Eqk. Magn. is calculated from Magnitude Scaling Law: For Fault source: Wells and Coppersmith (1994), Yen and Ma (2011) For interface source: Strasser et al (2010) and Blaser et al (2010) 60

Related Geometry Modeling in Southern Taiwan

Construction of three Geometry Modeling Cases for the fault systems around NPP3 in consideration of the Uncertainties.

Cumulative geologic slip rate across the entire southern region

WS# 2	Manila Trench	%	Manila Splay	%	Other Faults (%)	Total slip rate
	8		4		62	31.60
Case 1	10	16-25	6	10-13	70	54.18
	12		8		73	74.77
	8		4		62	31.74
Case 2	10	17-25	6	11-13	69	52.21
	12		8		72	71.63
	8		4		58	28.50
Case 3	10	19-28	6	13-14	66	46.80
	12		8		69	63.70
WM# 3	Manila Trench (mm/yr)	%	Manila Splay Fault (mm/yr)	%	Other Faults (%)	Total slip rate (mm/yr)
WM# 3	Manila Trench (mm/yr) 8	%	Manila Splay Fault (mm/yr) 4	%	Other Faults (%) 63	Total slip rate (mm/yr) 32.30
WM# 3 Case 1	Manila Trench (mm/yr) 8 14	% 22-25	Manila Splay Fault (mm/yr) 4 9	% 12-15	Other Faults (%) 63 63	Total slip rate (mm/yr) 32.30 62.10
WM# 3 Case 1	Manila Trench (mm/yr) 8 14 20	% 22-25	Manila Splay Fault (mm/yr) 4 9 15	% 12-15	Other Faults (%) 63 63 63	Total slip rate (mm/yr) 32.30 62.10 91.20
WM# 3 Case 1	Manila Trench (mm/yr) 8 14 20 8	% 22-25	Manila Splay Fault (mm/yr) 4 9 15 4	% 12-15	Other Faults (%) 63 63 62 61	Total slip rate (mm/yr) 32.30 62.10 91.20 30.80
WM# 3 Case 1 Case 2	Manila Trench (mm/yr) 8 14 20 8 8 14	% 22-25 24-26	Manila Splay Fault (mm/yr) 4 9 15 4 9	% 12-15 13-18	Other Faults (%) 63 63 62 61 60	Total slip rate (mm/yr) 32.30 62.10 91.20 30.80 57.90
WM# 3 Case 1 Case 2	Manila Trench (mm/yr) 8 14 20 8 4 14 20	% 22-25 24-26	Manila Splay Fault (mm/yr) 4 9 15 4 9 15	% 12-15 13-18	Other Faults (%) 63 63 62 61 60 59	Total slip rate (mm/yr) 32.30 62.10 91.20 30.80 57.90 84.70
WM# 3 Case 1 Case 2	Manila Trench (mm/yr) 8 14 20 8 14 20 8 20 8	% 22-25 24-26	Manila Splay Fault (mm/yr) 4 9 15 4 9 15 15 4	% 12-15 13-18	Other Faults (%) 63 63 62 61 60 59 60	Total slip rate (mm/yr) 32.30 62.10 91.20 30.80 57.90 84.70 30.10
WM# 3 Case 1 Case 2 Case 3	Manila Trench (mm/yr) 8 14 20 8 4 14 20 8 14 20	% 22-25 24-26 24-27	Manila Splay Fault (mm/yr) 4 9 15 4 9 15 4 9	% 12-15 13-18 13-18	Other Faults (%) 63 63 62 61 60 59 60 59	Total slip rate (mm/yr) 32.30 62.10 91.20 30.80 57.90 84.70 30.10 55.90

WS# 3	Manila Trench (mm/yr)	%	Manila Splay Fault (mm/yr)	%	Other Faults (%)	Total slip rate (mm/yr)
	8		4		63	32.30
Case 1	14	23-25	9	12-16	63	62.10
	24		15		59	95.20
	8		4		61	30.80
Case 2	14	24-27	9	13-17	60	57.90
	24		15		56	88.70
	8		4		60	30.10
Case 3	14	25-28	9	13-18	59	55.90
	24		15		55	85.80

Other Faults include West Hengchun Offshore Structure, Hengchun Fault, East Hengchun Offshore Fault, North Luzon Backthrust Fault, North Luzon Strike Slip Fault, Soutwest Hengchun Fault.

- WS# 2 The slip rate of Manila trench accounts for 20-30 percent of the slip rate of southern region of Taiwan.
 - Consider the plate convergence rate (86/mm/yr) Modify the slip rate of manila trench and splay fault.

WM# 3

Modify the slip rate of manila trench.

WS# 3

Manila Trench Slip Rate (mm/yr)							
Max. Medium Mi							
WS#2	12		10	8			
WM#3		20	14	8			
WS#3		24	14	8 62			

Manila Subduction Interface – Slip Rate

Slip Rate (mm/yr)	
8	
[0.3]	
<u> </u>	
(0.4]	
24	
[0.3]	

The range of uncertainty is wide and the median is lacking evidence, so we give almost equal weighting as [0.3] [0.4] [0.3].

	Slip Rate (mm/yr)						
	Max. Medium Min.						
WS#2	12	10	8				
WM#3	20	14	8				
WS#3	24	14	8				

In Manila Subduction zone, the instrumental catalog does not record any event with Mw > 8 and its aftershocks over the past more 400~500 hundred years (Megawati et al., 2009)

Thank You for Your Attention